feet above the landing surface must be not less than 2.1 percent for two-engine airplanes, 2.4 percent for three-engine airplanes, and 2.7 percent for four-engine airplanes, with—

- (i) The critical engine inoperative and its propeller in the minimum drag position;
- (ii) The remaining engine(s) at takeoff power;

(iii) Landing gear retracted;

- (iv) Wing flaps in the approach position(s) in which V_{S1} for these position(s) does not exceed 110 percent of the V_{S1} for the related all-engines-operated landing position(s); and
- (v) A climb speed established in connection with normal landing procedures but not exceeding 1.5 $V_{\rm SI}$.

[Doc. No. 27807, 61 FR 5186, Feb. 9, 1996]

§ 23.69 Enroute climb/descent.

- (a) All engines operating. The steady gradient and rate of climb must be determined at each weight, altitude, and ambient temperature within the operational limits established by the applicant with—
- (1) Not more than maximum continuous power on each engine;
 - (2) The landing gear retracted;
 - (3) The wing flaps retracted; and
- (4) A climb speed not less than 1.3 $V_{\rm S1}.$
- (b) One engine inoperative. The steady gradient and rate of climb/descent must be determined at each weight, altitude, and ambient temperature within the operational limits established by the applicant with—
- (1) The critical engine inoperative and its propeller in the minimum drag position:
- (2) The remaining engine(s) at not more than maximum continuous power;
 - (3) The landing gear retracted;
 - (4) The wing flaps retracted; and
- (5) A climb speed not less than 1.2 $\ensuremath{V_{\text{S1}}}.$

[Doc. No. 27807, 61 FR 5187, Feb. 9, 1996]

§ 23.71 Glide: Single-engine airplanes.

The maximum horizontal distance traveled in still air, in nautical miles, per 1,000 feet of altitude lost in a glide, and the speed necessary to achieve this must be determined with the engine in-

operative, its propeller in the minimum drag position, and landing gear and wing flaps in the most favorable available position.

[Doc. No. 27807, 61 FR 5187, Feb. 9, 1996]

§ 23.73 Reference landing approach speed.

- (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, $V_{\rm REF},$ must not be less than the greater of $V_{\rm MC},$ determined in $\S\,23.149(b)$ with the wing flaps in the most extended takeoff position, and 1.3 $V_{\rm SO}.$
- (b) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes in the normal, utility, and acrobatic category, the reference landing approach speed, $V_{\rm REF},$ must not be less than the greater of $V_{\rm MC},$ determined in §23.149(c), and 1.3 $V_{\rm SO}.$
- (c) For commuter category airplanes, the reference landing approach speed, $V_{\rm REF},$ must not be less than the greater of 1.05 $V_{\rm MC},$ determined in §23.149(c), and 1.3 $V_{\rm SO}.$

[Doc. No. 27807, 61 FR 5187, Feb. 9, 1996]

§ 23.75 Landing distance.

The horizontal distance necessary to land and come to a complete stop from a point 50 feet above the landing surface must be determined, for standard temperatures at each weight and altitude within the operational limits established for landing, as follows:

- (a) A steady approach at not less than V_{REF} , determined in accordance with $\S 23.73$ (a), (b), or (c), as appropriate, must be maintained down to the 50 foot height and—
- (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height.
- (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is safe. The gradient must be established as an operating limitation and the information necessary to display